Internals
The following types and methods are internal, and should not be considered safe for public use.
Types
Cosmology.AbstractCosmology — Typeabstract type AbstractCosmologyAbstract supertype for all cosmological models.
Cosmology.FlatLCDM — Typestruct FlatLCDM{T<:Real} <: Cosmology.AbstractFlatCosmologyΛCDM model of the universe with $Ω_k = 0$.
Cosmology.ClosedLCDM — Typestruct ClosedLCDM{T<:Real} <: Cosmology.AbstractClosedCosmologyΛCDM model of the universe with $Ω_k < 0$.
Cosmology.OpenLCDM — Typestruct OpenLCDM{T<:Real} <: Cosmology.AbstractOpenCosmologyΛCDM model of the universe with $Ω_k > 0$.
Methods
Cosmology.E — FunctionE(c::AbstractCosmology, z)Dimensionless Hubble function $E(z)$ at redshift z. It's defined as
\[E(z) ≡ \frac{H(z)}{H_0} = \frac{H(z)}{(100\mathrm{km/s/Mpc}) h}\]
where $H_0 = H(z=0)$ is the Hubble parameter at the present epoch (Schneider 2015, p. 183).
Cosmology.Z — FunctionZ(c::AbstractCosmology, z, nothing; kws...)
Z(c::AbstractCosmology, z₁, z₂; kws...)The line-of-sight comoving distance contributions for comoving radial distance.
It performs the integral
\[Z = \int_{z_1}^{z_2} \frac{dz}{E(z)} = \int_{a_2}^{a_1} \frac{da}{a^2 E(a)}\]
where we can perform a change of variables with $a = 1/(1+z)$, and $dz = -da/a^2$.
If nothing is used for the second bound of integration, it defaults to z₁ = 0 (i.e., a₁ = 1).
See also
Cosmology.a2E — Functiona2E(c::Union{FlatLCDM,ClosedLCDM,OpenLCDM}, a)Calculates the intermediate quantity $a^2 E(a)$. This is an internal function used to simplify computation.
Mathematical definition (for ΛCDM models):
\[a^2 E(a) = \sqrt{Ω_r + Ω_m a + Ω_k a^2 + Ω_Λ a^4}\]
where $Ω_k = 0$ for a flat cosmological model.
Cosmology.a2E — Methoda2E(c::Union{FlatWCDM,ClosedWCDM,OpenWCDM}, a)The implementation of $a^2 E(a)$ for WCDM models.
Mathematical definition (for WCDM models):
\[a^2 E(a) = \sqrt{Ω_r + Ω_m a + Ω_k a^2 + Ω_Λ a_{de}}\]
where $a_{de} = \exp[(1 - 3 w_0 - 3 w_a) \log(a) + 3 w_a (a - 1)]$.
Cosmology.hubble_dist0 — FunctionCosmology.hubble_time0 — Function